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Uniqueness of the Newton-Wigner 
Position Operator 

D. R. Grigore 1 

Received February 20, 1992 

It is shown that the quantum position operator of Newton and Wigner for 
nonzero-mass systems is uniquely determined if one imposes a quantum "manifest 
covariance" condition of the same type as the similar condition of Currie, Jordan, 
and Sudarshan in the framework of the Hamiltonian formalism. 

1. I N T R O D U C T I O N  

The notion of localizability of  relativistic particles has attracted consid- 
erable attention. It is generally admitted that the proper mathematical setting 
is the one due to Wightman (1962) (see also Varadarajan, 1985) which 
originates from the physical ideas of  Newton and Wigner (1949). 

Let us outline briefly this framework. We admit that the configuration 
space of a certain physical system is the Borel space (Q,/3);  here/~ is the 
Borel structure on Q. We also consider that the system is a pure quantum 
one. Then the lattice of  the system is of  the form P ( H ) ;  here H is some 
Hilbert space and P ( H )  is the lattice of  orthogonal projectors in H (see, for 
instance, Varadarajan, 1985). 

Then one can argue (Wightman, 1962, p. 847) that the position observ- 
able is a projection-valued measure: 

f l ~ E  ~ P e ~ P ( H )  

The physical interpretation is the following: the states in the range of 
Pe correspond to the localization of our system in E ~  Q. 
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If  G is a (Borel) group of symmetries, then there exists in H a projective 
unitary representation of G: 

G~ --) UgE U(H) 

Here U(H) is the set of unitary operators in H. 
If  Q is a G-space, then a natural compatibility condition is 

UgPF.U~' =P~.E (1.1) 

Here g. E is the image of E under the action of G. The couple (U, P) is 
called a system of imprimitivity for G based on Q. 

If  P is a position observable on Q = R 3, then according to the spectral 
theorem, we can construct three self-adjoint commuting operators Qj, Q2, 
and Q3, namely the position operators appearing in the Newton-Wigner 
analysis. A convenient way to construct them (Varadarajan, 1985) is to 
define first the unitary operators 

B(y) - Jexp(-ix �9 y)dP(x) (1.2) 

for any y~R 3. Then the Qk (k = 1, 2, 3) are determined via Stone's theorem 
by 

Q k f  -- i d B(tek) f]t=o (1.3) 

Here ek(k = 1, 2, 3) is the canonical basis in R 3. 
A very interesting situation appears when one tries to combine these 

ideas with relativistic invariance. Suppose that our system admits a group 
of invariance G which has as a subgroup the special Euclidean group SE(3). 
Then, we must have a projective unitary representation of G in H. By restric- 
tions, we have a projective unitary representation U of SE(3) in H. One says 
that the system is localizable (in R 3) iff there exists a position observable P 
(based on R 3) SUCh that (U, P) is a system of imprimitivity. 

According to the Newton-Wigner-Wightman analysis, the nonzero 
mass systems are localizable and zero-mass systems are not localizable in 
this sense. The nonzero- and zero-mass systems are by definition certain 
irreducible unitary continuous representations of the Poincar6 (or the 
Galilei) group. The nonlocalizability for zero-mass systems, especially for 
the photon, has generated a rather extensive literature (Kalnay, 1971 ; Jauch 
and Piron, 1967; Amrein, 1969; Angelopolous et al., 1974; Krauss, 1977; 
Jadzyk and Jancewicz, 1973 ; Bacry, t 988). 

On the other hand, even in the case of nonzero-mass systems (which 
are localizable) a curious phenomenon appears, namely the position observ- 
able is not unique. In some cases this arbitrariness can be explicitly described 
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(Varadarajan, 1985). Namely, suppose that p0 is a position observable of 
finite multiplicity and P is an arbitrary position observable. Then, there exists 
a unitary operator A in H such that A commutes with the representation U 
of SE(3) and 

P=AP~ -y (1.4) 

This nonunicity problem seems to be considered not very bothersome. 
In Varadarajan (1985) one can find a side remark to the sense that this 
problem is "noteworthy" and there exists a particular choice of P which 
seems to be the "simplest" and which gives the classical relationship between 
velocity and momentum. 

On the other hand, it is known that a similar unicity problem can be 
solved in the framework of classical Hamiltonian mechanics, imposing the 
so-called "manifest covariance" conditions (Currie et al., 1963). Namely, if 
K: (i= 1, 2, 3) are the (Lorentz) boost generators and H is the Hamiltonian, 
then one can show that Qj, Q2, and Q3 behave as the spatial components of 
a quadrivector iff one has the relation 

{K,, Q/} = Q,{H, Q/} (1.5) 

for i= 1,2, 3. It is tempting to use something similar in quantum mechanics. 
Jordan and Mukunda (1963) apply the naive correspondence rules: 

{. ,-  }--}i[-,-] (1.6) 

AB ~ ~(f~B + kft ) (1.7) 

and obtain for the quantum operators K~, H and Q~ the relation 

[K~, Q:]= �89 ~/1+ [H, QjIQ,) (1.8) 

Surprisingly, this equation gives a unique solution for systems of zero 
spin and has no solution for systems of nonzero spin. 

In this note, we propose a different solution. Namely, we will impose 
a "manifest covariance" condition by a purely quantum argument, with- 
out invoking the correspondence rules (1.6) and (1.7). We will find a 
unique position operator for any spin, which is exactly the one considered 
in Varadarajan (1985) as the "simplest" one. Moreover, we will show that 
the relation (1.8) is valid up to terms of order/ic -2. This quantum correction 
is zero iff the spin is zero. This completely explains the result of Jordan and 
Mukunda (1963). Moreover, this indicates that for the Galilei group, this 
quantum correction must disappear. 

There have been a number of attempts to define a Lorentz covariant 
quadrivector position operator (see, e.g., Bertrand, 1973), but they differ 
from ours in motivation and outcome. 
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In Sections 2 and 3 we analyze the cases of Poincar6 and Galilei invari- 
ance, respectively, and in Section 4 we formulate some conclusions. 

2. T H E  P O S I T I O N  O P E R A T O R  FOR  N O N Z E R O - M A S S  
POINCARI~ SYSTEMS 

2.1. In the notations of Varadarajan (1985), the system [m, s] of mass 
m and spin s corresponds to the irreducible projective representation 
W '''+'~ of the proper orthochronous Poincar6 group P~+. 

We can realize this representation in the Hilbert space 

where 

H = L2(R 3, C 2j+l, dp/E(p)) 

E(p) ==- (p2 + m 2),/2 

as follows. Let X + be the positive-energy hyperboloid : 

X;+={peR4[p~-p2=mZ, po>O } 

We define r : R 3 --* X ,  + by 

and 7/: X, + ~ R 3 by 

(2.1) 

(2.2) 

Then we have for any aeR 4 and any AeSL(2, C) 

.... +,s - e i~ ~(P)D(S)( U(A, (W~,~ 7 ) ( P ) -  p))f(rl(5(L)-'(r(p)))) (2.5) 

for a n y f a H .  Here U(A, p)aSU(2) is the so-called Wigner rotation, D (~) is 
the representation of weight s of SU(2), and 5' SL(2, C) ~ L~+ is the cover- 
ing homomorphism. 

2.2. As we have said in the Introduction, the system [m, s] is localizable 
in the sense of Newton and Wigner. Moreover, one can describe the most 
general expression of the position observable. More conveniently, one can 
describe the most general expression for the operators B(y) defined by (1.2). 
Namely, one finds that (Varadarajan, 1985) 

( B ( y ) / ) ( p ) = A ( p ) A ( p + y ) - ' ( E ( p )  ),/2 
\E(p + y) /  f ( P + Y )  (2.6) 

q (p) ~ p (2.4) 

r(p) - (E(p), p) (2.3) 
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Here A: R3---,C 2s+~ is a Borel function satisfying for any U~SU(2 )  
almost everywhere 

DC')( U)A (p) - A(6(U)p)  D~S)(U) (2.7) 

and g: SU(2) -~ SO(3) is the canonical homomorphism.  Then, according to 
(1.3), one finds the following expression for the position operators Qk: 

2.3. We formulate now the condition of relativistic covariance for the 
position operator. First, we start with the kinematic classical picture. Sup- 
pose we have two observers O and O' and they are connected by a boost of  
velocity v = t h ( z )  in the direction e3. I f  O' sees the system at t ' = 0  at the 
position x' = (xl, x~, x~), then, according to the Lorentz rules of  transforma- 
tion, O sees the system localized at x = (xi, x2, x3) at time t, where 

1 
t = th(z)x3,  x~ = xj, x~ = x2, x~ - x3 (2.9) 

ch(z) 

When we try to formulate this result in the quantum framework we are 
faced with the well-known problem that there are no states in H strictly 
localized in x. More precisely, the eigenvalue equation 

Qkgtx=x~gtx ( k =  1, 2, 3) (2.10) 

has solution of the form 

Vx(P) = E ( p ) A ( p ) v  e -j~p (2.11) 

which is not an element of  H. Here v is an arbitrary vector from C 2s+~. 
Nevertheless, according to the quantum point of  view, we can consider 

states which are localized at x in an approximate sense. For instance, let us 
define the states V ..... s H  for any a e R +  and any w C  2~+~ by 

/~ \3/4 
l i g ' # ~  

E(p) l/2 e-~'p2A(p)v e-i~.p (2.12) 

for w C  2~+~ of  norm 1. Then it is easy to prove that 

I1~ ..... II 2=1 (2.13) 

and 

(qk),~ ..... = Xk (2.14) 

Aqk = a I/2 (2.15) 
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So, in the limit a --* 0, ~' ..... becomes a state more and more localized 
at x~ R  3. 

2.4. Now, let ~zx,,,v be a state "approximately" localized at x'. We 
consider that this measurement is done by the observer O' at time t' = 0. (See 
Section 2.3 for notations.) According to the physical interpretation of  the 
representation W ''''+'s, from the point of  view of  the observer O, the state of  
the system at t = 0 is 

m,+.s 
W],(-z,c3),01Vx',~,~ 

where AB(Z, n ) ~ S L ( 2 ,  C )  corresponds to the boost in the direction n of  
velocity v = th(z  ). The discussion in Section 2.3 leads us to require that the 
observer O sees the particle localized around x at time t = th(z)x3. But the 
state of the system at time t = t h ( z ) x 3  is, from the point of view of  O, 

m,q-,s m,+,s 
7 t ...... z =- Wt,th(z)x~o W~(-z,~),o~tx' .... (2.16) 

So, our condition of  manifest covariance is that ~' ...... z describes a state 
localized around x, where the connection between x and x' is given by (2.9). 
Namely, we must have 

and 

(qk)v, ...... z = x k  (2.17) 

lira Aq~ = 0 (2.18) 
0,40 

for k = 1, 2, 3 and any v E C  2s+l. 

Let us note that if (2.17) and (2.18) are true, then because of the rotation 
covariance, a similar statement will be true for boosts in any direction. 

Now, it is not hard to prove that (2.17) is true for k = 1,2 and is also 
true for k = 3 iff A = const almost everywhere. So we can take A = 1. In this 
case it follows easily that Aqk behaves as a ~/2 for small a, so (2.18) follows. 

In conclusion, our main result is that the manifest covariance conditions 
formulated above is compatible with a unique expression for the position 
operator, namely 

0f p~ 
(Qkf) (P)  = i ~pk (p) - i 2E(p)2f  (p) (2.19) 

2.5. To study the validity of (1~4) it is easier to work in the vector 
bundle representation for W '''+'s (see Varadarajan, 1985, p. 365). 

Then the operators Qk are given by the formula (VIII.230) of Varadara- 
jan (t985). One can easily compute the infinitesimal generators K~ (I= 1, 2, 3) 
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in this representation. Then, inserting appropriately the factors h and c, one 
can show that we have 

[Ki, Qj] = �89 Qj] + [/4, Qj]Q~)+ o(hc -2) (2.20) 

where o(lic -2) is an expression containing only spin terms. This is the quan- 
tum version of the "manifest covariance" condition of Currie et al. (1963). 

3. THE POSITION OPERATOR FOR NONZERO-MASS 
GALILEI SYSTEM 

3.1. In the notations of Varadarajan (1985), the system of mass m and 
spin s corresponds to the representation V ~'~ of the covering group of the 
proper orthochronous Galilei group Gr+. It can be realized in the Hilbert 
space H=L2(R 3, C 2s§ dp), according to the following formula: 

(Vv, u,~..f)(p)=exp i a ' P + 2  ra" u -  it/?' D(~)(U)f(8(U)-l(p+ru)) 

(3.1) 

Here UeSU(2), ueR 3 is the velocity, a is the space translation, and r/eR is 
the time translation. 

As in Section 2, we can describe explicitly the most general position 
observable. Namely, the operators B(x) must have the following generic 
form: 

(B(x)) f ( x )  = A (p)A(p + x ) - l f  (p + x) (3.2) 

where A : R 3 -~ C 2~+~ is a Borel function satisfying (2.7). It follows that the 
position operators are 

(Qkf)(P) = i ~ ( p ) -  i ~A (p)A(p)-lf(p) (3.3) 

3.2. The condition of manifest covariance with respect to Galilei boosts 
is simpler than in the Poincarb case. Let us suppose that the two observers 
O and O' are connected by a boost of velocity u. If O sees the system at t = 
0 at the position x, then according to the formula for the Galilei boosts, the 
observer O' sees the system at t '=  0 at the position x '=  x - t u  = x. 

As in Section 2, the solution of the eigenvalue equation 

Qk gx = xk gx (3.4) 
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(k = 1,2, 3) is of the form 

u/x.o(p) = e - " ' P A ( p ) v  (3.5) 

for any w C 2~+1, and so is not an element of the Hilbert space H. Neverthe- 
less, we can consider the elements 

( rc/3/2 
e - ip ' '  e-~P2A(p)v (3.6) 

for v ~ C  2s+1 of norm 1 and we have 

(qk)~, ..... =Xk  (3.7) 

and 
Aqk = Ct 1/2 (3.8) 

for k =  1, 2, 3. 

3.3. Now, let ~x.~.o be the state of the system from the point of view 
of the observer O'. As in Section 2, the state of the system from the point 
of view of the observer O is 

~t .. . .  .,~= V(~.,O,oVt . . . . .  (3.9) 

According to the discussion in Section 3.2, our condition of manifest 
covariance is that g ....... describes a system localized around x at t =0,  i.e., 

(qk) ,v  ....... = Xk (3.10) 

and 

lira Aqk=0 (3.11) 
a ~ 0  

for k =  1, 2, 3. 
It is elementary to prove that (3.10) is equivalent to A = const, so, as in 

Section 2, we can take A = 1. So, in this case also, the manifest covariance 
condition gives a unique position operator, namely 

( Q k f ) ( P )  = i ~Pk (p) (3.12) 

It is easy to see that in this case we have 

[K;, Qj]=0 (3.13) 

Again we note that (3.13) is the quantum counterpart of a similar 
classical relation (Jordan and Mukunda, 1963). In this case there are no 
quantum corrections. This can be explained by the presence of c -2 in the 
expression of the relativistic quantum correction in (2.20). 
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4. C O N C L U S I O N S  

The relation (2.20) shows that  the naive quant iza t ion  rules (1.6) and 
(1.7) do not  always work.  This explains in par t  the difficulties o f  all the 
quant iza t ion  schemes used in the literature. 

I t  is plausible that  the same unicity result holds also for  the pho ton  if 
the localizabili ty of  this system is described in the sense of  the Wigh tman  
f r a m e w o r k  (Grigore ,  1989). 

It  is interesting to try to generalize a long these lines the well-known 
results o f  the ' non in te rac t ion"- type  theorems ( Jordan  and Mukunda ,  1963; 
Bertrand,  1973). 
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